Results on Behaviour, Acceptance, and Usage

Navigation System

Stefanie Schoch IZVW Barbara Metz IZVW

Final Event 26-27 June 2012 Autoworld, Brussels

www.eurofot-ip.eu

Bringing intelligent vehicles to the road

Research questions

Usage of navigation systems and impact on driving:

- 1. Acceptance & usage
- 2. Influence on efficiency
- 3. Impact of handling of navigation systems on driving

Comparison of 2 HMI-solutions:

Mobile

www.eurofot-ip.eu

Data base

~ 1 000 000 kilometres

3 26 June 2012 euroFOT Final Event – Brussels

System usage and acceptance

Expectations on both systems are positive, but the mobile device does not fulfil the expectations.

4 26 June 2012 euroFOT Final Event – Brussels

www.eurofot-ip.eu

System usage and acceptance

Usage reflects subjective evaluation of systems

- Significantly higher usage of built-in systems
- Significant decrease of usage of mobile device over time

Analysis of system handling

 In the literature, impact of system handling (e.g. entering a destination) is widely investigated

Solution Negative impacts on driving safety are reported

System handling - Approach

System inputs are merged into system handling if distance between 2 inputs is less than 5 sec

Comparison of directly before, during and directly after system handling

System handling - 1

- System handling in standstill and at low speeds is generally preferred.
- System handling on rural roads or highways rarely occurs.

Impact of system handling

Evaluation of active compensation by the drivers

- Change of speed
- Ø Distance to lead vehicle
- Solution Lane keeping performance

Evaluation of impact on driving safety

- Critical distance
- 8 Bad lane keeping

Impact of system handling – Example distance

www.eurofot-ip.eu

System handling - 2

- Separation Separation & Sepa
- No indication that safety critical changes occur in driving during system inputs

		Built-in			Mobile		
		Highway	Rural	Urban	Highway	Rural	Urban
Active compen- sation	Speed		<<	<<		<<	
	Distance		>	>>		>	>>
	Lane keeping				>>		>>
Safety impact	Crit. distance	<<		<<	<<		<<
	Bad lane keep.	<<					

11 26 June 2012 euroFOT Final Event – Brussels

Summary of main results

- Solution And A straight A straightA straight A straight A straight A straight A strai
- Built-in navigation systems are preferred to the mobile device.
- Ø Difference in subjective evaluation is reflected in usage.
- Orivers compensate for the distraction caused by handling a navigation system.
- There is no indication that handling of navigation systems degrades driving safety.

8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test**

