Impact and Cost Benefit Analysis

Safety

Lucas Malta Volvo Group Trucks Technology

Final Event 26-27 June 2012 Autoworld, Brussels

www.eurofot-ip.eu

Bringing intelligent vehicles to the road

Safety impact analysis in euroFOT

Better understanding the impact of studied functions on safety

Hypothesis testing methodology

Event-based analysis

Section Frequency of safety critical driving situations (e.g., change in the number of incidents)

Aggregation-based analysis

Aggregated continuous data (e.g., change in average speed)

Risk Matrix Approach

Simulation-based (ACC+FCW only)

ACC+FCW (motorways)

4

ACC+FCW (motorways)

ACC+FCW

Risk Matrix Approach

Ø Decrease in crash involvement risk in motorways when using the bundle.

Possible negative side-effects tested

- Increase in visual secondary tasks during normal driving but this difference was not found during incidents.
- No negative side-effect on focus on forward roadway during incidents.

Potential benefit Up-scaling to EU-27

Vehicle type	Road type	Usage (portion of the total driving in treatment)	Changes between baseline and treatment in safety related measures in the FOT data	Potential reduction in rear end crashes	Potential reduction in the injury accident population per road type in EU- 27
Passenger Cars	Motorway	51%	32 - 82%	16 - 42%	2.2 - 5.8%
Trucks	Motorway	42%	14 - 36%	6 - 15%	0.2 - 0.6%

Lane Departure Warning (+ Impairment Warning in cars)

www.eurofot-ip.eu

LDW(+IW)

Possible negative side-effects tested

- Increase in use of nomadic devices during normal driving. Nevertheless, during incidents, no such difference was found.
- No influence in the amount of night/drowsy driving and focus on forward roadway during incidents.

Up-scaling of results to EU-27

8 Insufficient evidence. Further analysis is needed,

Navigation system (built-in/mobile)

	Road type	Change in treatment			
Sofoty magazina		Familiar		Unfamiliar	
Salety measure		Built-in Device	Mobile Device	Built-in Device	Mobile Device
Incidente	Rural	-7.8%	-50.1%	0	0
Incidents	Urban	-8.1%	-52.6%	0	0
Proportion of critical THW	Rural	S-	S-		
Proportion of critical TTC					
Hard braking		S-			
Proportion of critical TLC					
Lane exceedances		S-		S-	
Proportion of critical THW	Urban	S-	S-		
Proportion of critical TTC		S-	S-		
Hard braking		S-			
Proportion of critical TLC				S-	
Lane exceedances		S-		S-	

Significant results (p<=0.05): Decrease S-, Increase S+

Navigation system

Direct effects

- Findings contradict previous assumptions on the safety mechanisms of the navigation system.
- Deeper understanding of the safety mechanism is needed.

Indirect effects

Both systems reduced travel time compared to driving in the baseline condition.

Up-scaling of results to EU-27

Difficult to judge whether the measured effects can be generalized and up-scaled to EU-27.

11 26 June 2012 euroFOT Final Event – Brussels

www.eurofot-ip.eu

Speed Regulation System (SL+CC)

Event likelihood when condition changes from Baseline to **SL Active**

Event likelihood when condition changes from Baseline to **CC Active**

Aggregation-based

Increase in average speed for both systems in different road types.

12 26 June 2012 euroFOT Final Event – Brussels

Speed Regulation System (SL+CC)

Both SL and CC were mainly expected to have an **effect on speed**.

Models which attempt to quantify the relationship between **speed and accidents** were considered for up-scaling.

Solution Negative effect with increased speed.

Up-scaling of results to EU-27

Insufficient evidence. Different models are needed.

Blind Spot Information System (BLIS)

Use of turn indicator decreased by 10% when BLIS was available and drivers were not simultaneously using LDW+IW.

Ø Drivers trust the function not to give false negatives.

Less than ten **BLIS-relevant incidents** could be identified within the analyzed data (time consuming process) \rightarrow difficult to draw solid conclusions.

Up-scaling of results to EU-27

Insufficient evidence. Further analysis is needed.

26 June 2012 euroFOT Final Event – Brussels

14

New understanding of how studied functions affect a number of **safety indicators and driver behaviors** in the real-world.

ACC+FCW: potential reduction of rear-end crashes on motorways by **16-42%** for cars and by **6-15%** for trucks.

Analysis of how functions behave in a **multitude of conditions** (road type, road familiarity, truck weight, weather, light, etc) was conducted.

Progress on a multi-site analysis framework.

8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test**

Potential benefit – all road types

Vehicle type	Road type	Usage (portion of the total driving in treatment)	Changes between baseline and treatment in safety related measures in the FOT data	Potential reduction in the target crash population (rear end crashes)	Potential reduction in the injury accident population per road type in EU-27
Passenger Cars	Motorway	51%	32 - 82%	16 - 42%	2.2 - 5.8%
Passenger Cars	Rural	31%	32 - 45%	10 - 14%	0.47 - 0.65%
Passenger Cars	Urban	19%	32%	6%	0.14%
Trucks	Motorway	42%	14 - 36%	6 - 15%	0.2 - 0.6%

Data selection cars – ACC+FCW

Expected speed above 60km/h, vehicle speed above 50km/h, and carfollowing situations. In addition, ACC OFF portions were removed from treatment. Five seconds were added after ACC shut off.

18

www.eurofot-ip.eu

Data selection trucks – ACC+FCW

Posted speed above 100km/h, vehicle speed above 50km/h, and car-following situations. In addition, ACC OFF portions were removed from treatment. Five seconds were added after ACC shut off.

> Traffic density distribution in filtered baseline and treatment ACC+FCW (trucks)

Navigation system

Critical THW:

proportion of time with Time Headway < 0.5 seconds Critical TTC:

proportion of time with Time to Collision < 1.75 seconds Critical TLC:

proportion of time with Time to Lane Crossing < 1 second

