Evaluation Methodology

Methodology for Safety Impact Assessment

Mikael Ljung Aust Volvo Cars

Final Event 26-27 June 2012 Autoworld, Brussels

www.eurofot-ip.eu

Bringing intelligent vehicles to the road

Safety impact assessment in euroFOT

A safety impact assessment estimates how many accidents/injuries a function potentially could prevent if it was widely deployed

The assessment should be:

- Scientifically sound
- Quantitative
- Harmonized between VMC's
- Suitable for CBA

Safety impact assessment in euroFOT

Two parts in analysing the impact of studied functions on safety

Safety impact assessment in euroFOT

The term "safety impact" can be interpreted in several ways:

- 8 Changes in crash involvement
 - ▷ (Not available in euroFOT)
- Changes in near crash (incident) involvement
- Changes in other measures with more or less clear connection to safety:
 - ▷ changes in (mean) speed
 - ▷ changes in (mean) headway
 - ▷ frequency of lane changes

Step 1: identify the target crash population

Of all crashes that occur, which can the function prevent?

Example for LDW: crashes that start with inadvertent lane departure & vehicle speed above 60 kph & lane

Step 2: test if function effects driver behaviour

In the collected data, can safety relevant changes between baseline (no function) and treatment (function available) be identified?

Two approaches to data

Sevent based analysis

For time discrete events (incidents, hard brakings, etc)

- Identify time segments which contain types of events that is thought to predict crashes
- Compare frequencies in baseline and treatment
- Can also be applied in simulation

Aggregation based analysis

Function influence on continuous variables (speed, etc)

- Take longer recorded time segments for interesting variables
- Compute average value over time segments
- Compare overall averages in baseline and treatment

Step 3: if there are empirical differences, what is the overall interpretation?

If some indicators are positive, some neutral and some negative, how should they be combined?

Step 4: if a function's overall effect is judged positive, how would the target crash population change if all vehicles in the countries where it was evaluated had it?

Step 5: take the average "local" impact and project on EU-27

Given the predicted crash population change in the countries where the function was evaluated, how could other countries be expected to change?

10 27 June 2012 euroFOT Final Event – Brussels

Safety Impact Assessment is a challenge and a leap of faith!

- When using non-crash data to predict future crashes, you have to assume that your indicators are causally predictive of crashes
- Today, no generally agreed indicator set exists (our knowledge on crash causation is insufficient)
 - Different studies/approaches make different assumptions
 - ▷ VTTI (100 car) Kinematic state + gaze behaviour is predictive
 - Alcolock Intoxication is predictive
 - Speed limiter High speeds are predictive
 - ▷ euroFOT Hard brakings and time headway are predictive

Results should be used with caution!

8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test, 8 Functionalities** 28 Partners, 1000 Vehicles, 1 Field Operational Test 8 Functionalities, 28 Partners, 1000 Vehicles **1 Field Operational Test**

